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Abstract

This report presents the procedures and results of the performed experiments
relative to the construction of a motion graph for character animation, using a
momentum-based extension of a kinematics-based distance metric. The graph is
automatically generated from an input set of motion clips and used to animate
a human-like character in a virtual environment. The aim of the experiments is
to generate motion graphs with the new metric and evaluate their performances.
The results show that the new hybrid distance metric offers improvements with
respect to the kinematics-based one, in terms of average distance between the
poses in the transitions, while the kinematics-based distance metric performs
better in terms of graph density.
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1 Introduction

Today’s technology allows the creation of extremely realistic and interactive
virtual worlds. To preserve the illusion and enhance the sense of immersion in
these environments, the need comes for the characters that inhabit them to be
animated in the most authentic way possible. Animating human-like models
represents a huge challenge, because taking in consideration all the subtleties
of human movements, necessary to obtain satisfying and convincing results, is
often hard and time-consuming.

Many approaches have been proposed to deal with this problem; one of the
most widely used animation techniques is motion capture, which allows the
recording of a person performing specific actions. Motion capture is a reliable
way to reproduce human movements but comes with one big downside: editing
the motion capture data, aside from small changes, has proven to be very diffi-
cult. If the recorded data do not meet the quality requirements expected by the
user, the only solution is another motion capture session; this greatly increases
costs and time consumption.

Kovar et al. [2002] presented a method that allows the creation of new streams
of motion based on a set of pre-recorded movements while preserving the overall
quality of the original data. The result is a structure called a motion graph,
which allows the rearrangement of the original motion clips in different ways,
thus allowing the creation of new sequences.

In order to construct these new movements, the set of original data must be
examined for transition points, i.e. points in the clips in which the character’s
motions are sufficiently similar between each other. One efficient way to deter-
mine such similarity is the comparison of the character’s pose: if the poses are
close enough, blending techniques can be used to create a transition between
the data segments.

In this report we propose a different method to find transition point between
clips: instead of just using a kinematics-based metric to evaluate the pose simi-
larities between the characters, we implemented a physics-based extension that
will evaluate the angular and linear momentum of the characters and establish
the presence of a similarity according to the distance between these values. The
purpose is to compare the graphs obtained using the these different metrics and
analyze the results in terms of connectivity and distance between the poses in
the transition phase.

The remainder of the report is organized as follows. In section 2 we describe
related work. In section 3 we describe the method in detail and present the
experiment results. In Section 4 we draw conclusions and suggest areas of
improvement and future work.
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2 Related work

Motion graph construction requires the use of a distance metric to individ-
uate good candidates for the transitions and many different metrics have been
proposed. In Kovar et al. [2002], detection of candidate transition points is
performed using a point cloud distance metric. In Gleicher et al. [2003], the
authors use point clouds to compute distances between frames of different clips.
Point clouds are formed attaching markers to the skeleton of the character in
the two candidate frames and in a small window of frames adjacent to them;
subsequently, the weighted sum of squared distance between the points forming
the point clouds is determined and stored in a database. Transition points are
selected by searching for local minima in a function that associates every frame
with its distance towards other frames of a motion clip. These minima are eval-
uated against a user-defined threshold and if they are below such threshold, a
transition can be established between the examined frames.

In Arikan and Forsyth [2002] a metric is defined by calculating the difference
between joint positions and velocities, as well as the difference between the torso
velocities and acceleration. These values are then used to calculate a weight that
is assigned to the edges of the motion graph; the weight represents the degree
to which two frames can be concatenated.

A similar metric is used in Lee et al. [2002], where a distance function is
computed as the sum of two terms, describing the weighted difference of joint
angles and the weighted difference of joint velocities. Subsequently, the function
is used to calculate the expectation of transition from one frame to another, by
means of a probability function which takes the previously calculated distance
function as input.

Forbes and Fiume [2005] propose a different way to calculate the distance
between frames. The animation dataset is transformed with the Principal Com-
ponent Analysis technique; the resulting principal components vectors represent
the axes in space. Points are represented by a combination of these principal
components thus allowing the description of different poses. The distance is
then computed as a scaled L2 norm of these PC coordinates. The same concept
is also used in Egges et al. [2004].

Li et al. [2008] take a different approach on the evaluation of transition points
in motion capture data. Using the conjecture that in the comparison of two
similar trajectories, the most natural looking is the one that implies less effort,
they develop a new metric to measure said effort. They are then able to compute
an L-score for the different motions that allows them to select the optimal
transition points.
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The idea of using linear and angular momentum for motion synthesis is not
new; In Abe et al. [2004] the authors introduce a system for the editing of highly
dynamic character motion that allows animators to create smooth animations
maintaining at the same time a good amount of interactive control over the
character. The preservation of the behaviour of the input motion is guaranteed
by a technique that matches the linear and angular momentum patterns of the
data; by solving a constrained optimization problem for every spline that is
used to define the momentum characteristics of a motion, a set of control points
and knots are computed. The points and knots are used to make sure that the
edited motions follow the momentum path of the original data, thus resulting
in physically realistic movements.
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3 Momentum-based metric

3.1 Method

The purpose of this experiment was the evaluation of the performance of a
motion graph constructed with a metric that was not only based on kinematic
parameters and pose similarity. We initially implemented one based on the
difference between a character’s linear and angular momentum in different poses
and we studied the quality of the resulting motion graph. The decision to also
research on a metric that was a combination of both the point cloud and the
momentum-based one came from the observation that while two frames may
have similar values of momentum, it is not necessary true that they correspond
to similar movements of a character.

In fact, angular and linear momentum are physical properties of moving bod-
ies but, by themselves, they do not offer a visual description of a performed
movement; linear momentum is a vector quantity defined as the product of the
body’s mass with its velocity. It quantifies the force that is necessary to stop
a moving body in the unit of time. Its analogous quantity for spatial rotations
is the angular momentum; the angular momentum of a body is defined as the
product of a body’s moment of inertia with its angular velocity; it measures the
tendency of a rotating body to persist in its rotary motion.

Thus, it appears evident the need to incorporate some sort of pose recog-
nition phase while building the transitions between clips. The implementation
was followed by an experimentation phase in which we compared the outcome of
the process using three different configurations: the first used the original point
cloud distance metric; the second configuration was purely based on the momen-
tum difference in the animation frames; finally, the third configuration was the
combination of the first two, with the use of different user-defined thresholds.

The initial stage of the implementation process was focused on gathering and
examining relevant studies on animation techniques and documentation about
calculation of linear and angular momentum of human bodies. This was followed
by a structural analysis of the given framework aimed at understanding how to
modify the already existing system in order to substitute the former distance
metric with the new one. In fact, the framework was already provided with a
module for the creation of a motion graph generated from a set of motion clips,
using the point cloud distance metric.

Prior to the actual implementation of the momentum-based metric, we spent
some time analyzing the point cloud distance metric to better understand its
operating principles. Soon it appeared evident that the most straightforward
way to develop the new distance metric would be to set up a structure to attach
to the character’s skeleton in order to keep track of the physical properties that
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were being considered; thus a physicsSkeleton structure was created. This struc-
ture mainly acted as container of physicsBones; each bone was approximated as
a cylinder object with several defining attributes attached to it. Namely, every
bone had a name, a mass, a width and a length that were used to calculate their
moment of inertia and center of mass.

Moment of inertia is a physical property of a body that defines its resistance to
a variation of angular velocity about a certain rotation axis. The physicsSkeleton
contained as many bones as the number of body parts of which the character’s
skeleton is composed, a total of twenty-seven; the inertia tensor of each bone is
given by:

I =

 1
12m(3r2 + h2) +mr2x 0 0

0 1
12m(3r2 + h2) +mr2y 0

0 0 1
2mr

2 +mr2z


The mass and girth data for the limbs were extrapolated by experimental data
found in Plagenhoef et al. [1983]. The whole character had a mass of 75 kg,
distributed along the parts that composed it; every part had a weight associated
to it that was used to determine its mass.

We used the pre-existent code that already took care of aligning the charac-
ter’s position in order to create a coherent animation, with a major distinction.
In the original code, the transitions were generated only if the computed point
cloud distance was below a certain user-defined threshold; this mechanism acted
as a filter and allowed the creation of a relatively small database. The new ver-
sion, instead, created every possible transitions between all the input frames
and the resulting database was much bigger than before; this served for the
construction of a unique database that could be used with the three different
metrics, instead of building a database for each of them. The filtering was thus
moved to a later phase.

In detail, the whole experimental process can be divided in the following four
points:

1. The motion files were loaded into the framework, which was also used to
set the virtual environment in which the character moved and its corre-
sponding physicsSkeleton object.

2. Subsequently, the files were examined frame by frame: for each of them,
linear and angular momentum of the character were computed. Each
frame of the first motion was compared to each frame of the second one
and the measured difference was temporary stored.

3. After this stage, the points to build the point clouds were gathered, for
every frame of both the files, and the point cloud distance was stored.

6



4. Finally, the translation and rotation data for the model’s alignment were
calculated and the point cloud distance, the linear momentum distance
and the angular momentum distance were stored in the database.

Formulas used for the calculation of the momentum are:

p = mv

and

L = Iω

The first one refers to the linear momentum, while the second one refers to
the angular momentum. Since the linear and angular momentum are strictly
dependent on the linear and angular velocity,respectively, they were calculated
frame by frame as :

v(t2 ) =
x(t2 )− x(t1 )

∆t

and

ω(t2 ) =
θ(t2 )− θ(t1 )

∆t

The final database contained, as precedently stated, all the possible transi-
tions between the frames of the two motion files; once it was completed, we built
the motion graph from it. In order to do so, we used different combinations of
three different thresholds; these thresholds, applied on the database, filtered out
the transitions and the resulting subset was used to build the graph.
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3.2 Experiment

The framework runs on a pc that mounts a 2.40 GHz dual core processor, 8
GB of ram, in a Windows environment with the Visual Studio IDE.

The virtual environment used for the simulation is composed of a square
plane on which a stylized human model is able to walk. Figure 1 shows us the
environment and the model used in the experiment.

Figure 1: A close-up of the model used in the experiment

In order to obtain a motion graph of adequate dimensions, a total of 10
animations were used; the animations show a character walking at different gait
speed.

The output database is composed by a total of 910 MB worth of data. Its
structure is shown in Figure 2 and Figure 3. The former shows the animations
table with the max timekey column being the duration time of each video; the
latter shows the transitions table in which we can see the columns distance,
which is referring to the point cloud distance, and the columns that indicate
to the linear momentum distance and the angular momentum distance. The
columns from timekey and to timekey point out the keyframes in the motions
in which the transitions happen; from this image it can be noticed that each
transition is repeated in two directions, because it can happen in both ways.
This design choice was already part of the framework and we decided not to
modify it. As previously specified, the cause for the big size of the database is
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that it contains all the possible transitions between the different frames com-
posing the motion clips. We chose the approach of filtering valid transitions in
a second stage for reasons of computing speed. In fact, the creation of different
databases for the three different metrics (point cloud, momentum-based and
hybrid) would have taken more time than the about 150 hours of calculation
required for one big comprehensive database.

Figure 2: The transition table of the output database

Figure 3: The animation table of the output database

The experiment was conducted as follows: after the creation of the motion
graph, the resulting animation ran while a background process calculated the
average distance between the frames chosen for the transitions. This was nec-
essary because the framework did not include any motion blending, making the
evaluation of naturalness of the motion very difficult. The average distance
allowed us to judge the performances of the different metrics with objective
data. Secondly, the graph density was measured and compared for the different
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thresholds and metrics; a dense graph is a graph in which the number of edges
is close to the maximal number of edges and graph density is the property that
define if a graph is a dense or sparse one, with values in the interval [0,1]. The
denser the graph is, the more connected are the different motion clips. Graph
density is calculated as:

D =
2 |E |

|V |(|V | − 1 )

where E is the number of edges and V is the number of vertices of the graph.
The results showed an advantage of the hybrid metric over the other two that
were tested in terms of average distance. The time needed to build a motion
graph varied greatly according to the threshold values selected by the user and
by the type of metric utilized, ranging between 80 and 17400 seconds. The
average distance considered for the results represents the distance between the
poses, in meters; the smaller it is, the more similar are the poses, which leads
to better blending results.
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3.2.1 Point cloud distance metric

First of all, the experiment was carried out on the point cloud distance met-
ric; thus the only parameter that was modified was the point cloud distance
threshold. The values of this threshold ranged between 0.003m and 0.030 m,
with a pace of 0.003 m, for a total of 10 different values. The average time to
build the motion graph was 2977 seconds, with the values towards the end of
the interval taking considerably more time than those at the beginning; a bigger
threshold means more transitions and thus a bigger build time for the graph.
The results observed using this metric showed that the average distance between
the transition frames increased with the growth of the threshold value, ranging
from 0.00223927 m to 0.0184824 m. The graph density is also in a relationship
of direct proportionality with the thresholds, with higher thresholds having a
higher value for the edge density parameter, as a result of the less restrictive
conditions to create a transition. The results are showed in the following charts.
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Figure 4: Average distance chart that shows the growth of the average distance
with the threshold for the point cloud distance metric.

From the results we can deduce that low values of the thresholds will guar-
antee better results in terms of visual quality, but with more restriction on the
number of animations that can be created.
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Figure 5: Edge density chart that shows the growth of the edge density with
the threshold for the point cloud distance metric.

3.2.2 Momentum-based distance metric

The point cloud distance metric experiment was followed by the experiment on
the new momentum-based metric. In this case, the variables were represented by
the linear momentum distance and the angular momentum distance thresholds.

The former varied between 10 Kgm2

s and 100Kgm2

s , with a pace of 10Kgm2

s , while

the latter went from 1.5Kgm
s to 15Kgm

s , with a pace of 1.5Kgm
s . Every value

of the linear momentum threshold was tested with every value of the angular
momentum threshold. The average time to construct the graph was about
6448 seconds, more than twice the time required by the point distance metric.
Additionally, an unforeseen low memory error was raised when the value of the

linear momentum distance threshold was set between 80Kgm2

s and 100Kgm2

s .
For this reason, some of the cases were considered incomplete and discarded in
the final evaluation. The results observed with this metric can be considered
quite unsatisfactory; the following chart shows the results when the angular
momentum threshold is fixed at 1.5 Kgm

s .
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Figure 6: Average distance chart that shows the reduction of the average
distance with the growth of threshold for the momentum-based distance metric.

From the chart it can be noticed that, in this case, the average distance
between the poses decreases as the momentum thresholds grows. In addition to
that, if we look at the numbers, we can actually see that even for the thresh-
olds that have the lowest average distance, the actual value is much higher
with respect to the point cloud distance metric values. Obviously this is not
the behaviour that we were looking for and it confirms the idea that a pure
momentum-based distance metric is not adequate to build motion graphs that
result in satisfying animations. On the contrary, if we take a look at the data for
the edge density, we can see that the beaviour does not differ from the expected
one, with bigger thresholds having bigger density values. In this chart we show
the result when the angular momentum threshold is fixed at 1.5 Kgm

s .

3.2.3 Hybrid distance metric

Finally, we tested the last distance metric, a combination of the first two. In
practical terms, this means that the transitions were created using the point
cloud distance thresholds and the momentum distance thresholds together. As
in the previous experiments, the values of the thresholds varied between 0.003m

and 0.030 m for the point cloud distance threshold, between 10 Kgm2

s and

100Kgm2

s for the linear momentum distance threshold and between 1.5Kgm
s and

15Kgm
s for the angular momentum distance threshold. This brought the final

number of tested values to 100. An excerpt of the collected data can be seen in
Figure 8.
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Figure 7: Edge density chart that shows the growth of the edge density with the
linear momentum threshold and a fixed thresholf for the angular momentum.

The average time for the graph construction was 10600 seconds. Generally we
noticed a reduction of the average distance between transitions; comparing it
with the point cloud distance metric, we found that in the best case, in which the
results showed the lowest average distance for both the metrics, the percentage
reduction was up to 19%. Comparing the hybrid metric with the momentum-
based metric showed that, in the best case, the contraction was up to 97%. The
following chart shows the results when the linear momentum threshold is fixed

at 10 Kgm2

s and the angular momentum threshold is at 1.5Kgm
s , and compares

them with the point cloud distance curve showed before:
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Figure 8: Values for the thresholds used in the generation of the motion graph
for the hybrid distance metric.
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Figure 9: Average distance chart that compares the point cloud distance metric
curve with the hybrid distance metric curve .

We can clearly see the advantage of the hybrid distance metric curve that
always stays under the point cloud distance metric one. Unfortunately, we did
not find the same positive results in terms of graph density: if we look at the
charts for the graph density with the same parameters, we can see something
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unexpected:
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Figure 10: Edge density chart that compares the edge density curves for the
point cloud distance metric and the hybrid distance metric.

We can immediately notice that the density curve for the hybrid distance
metric is decreasing, instead of increasing like it would be expected. In its
maximum value, the hybrid curve is still well under the maximum density value
reached by the point cloud distance, which puts the hybrid distance metric at
disadvantage. Comparing the numbers, we actually have a cutback of about
18.85%. The same can be observed if we compare the hybrid distance metric
with the pure momentum-based one: the contraction reaches the value of 70%,
in the best cases, when the density values are the highest for both of the metrics.
The reasons for this behaviour are still not clear and are being investigated.
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4 Conclusion

In conclusion, a distance metric based on physical properties of a moving
character was developed and tested to evaluate possible improvements against
one of the metrics that are currently used to generate motion graphs.

In particular, it was compared to the point-cloud distance metric, a tech-
nique also discussed by Mémoli and Sapiro [2004]. The analysis showed that a
pure momentum-based metric by itself did not produce interesting results; the
main problem was that angular and linear momentum are properties that, by
themselves, do not describe movements in a way that is suitable to the task of
building a motion graph. However, the implementation of a metric that takes
into account both the distance between the poses and the similarities in mo-
mentum showed promising results that could help improving the final quality
of the animations.

Further research should be aimed at improving the graph connectivity, which
would guarantee more freedom in the creation of different animations. Moreover,
further physical properties could be used to increase the precision of the metric,
like torques and forces; also, it would be worth exploring different kinds of
technique for pose recognition and doing a comparative study on the quality of
the resulting animations.
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